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1. INTRODUCTION

Many incoherent optical/digital systems can be used
for non-imaging purposes, such as passive ranging.
These systems cannot effectively be analyzed or de-
signed in terms of traditional image-forming sys-
tems. Instead, such systems should be analyzed in
terms of information theory. Through mathemat-
ical modelling of the sampled image, information
theory can be used to optimize a given system.
The Fisher Information matrix and the Cramer-

 Rao bound are two widespread and tractable mea-

sures of the information content of a signal. By
analyzing information processing systems in terms
of these measures of information, illuminating con-
clusions that are related to optimum design can be
found. Such conclusions lead to necessary condi-
tions that particular types of information process-
ing systems must possess. We consider these neces-
sary conditions for three incoherent optical systems,
namely passive range estimation, extended depth of
field, and passive range detection.

2. FISHER INFORMATION AND THE
CRAMER-RAO BOUND

Let the parameters desired from a given estimation
system be denoted by the length p vector @

Q: [¢1’¢2:"')¢P]T (1)

where the noiseless measurement is some vector func-
tion of these parameters, say z(®). The actual
measurement in any real system will always be cor-
rupted by noise. The limit of this noise will be signal
dependent shot noise or detector quantization noise.
We assume a zero mean white gaussian noise with
variance o2. Our ability, on the average, to estimate
& is bounded by the Cramer-Rao bound [1, 2, 3].
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This bound can describe both biased and unbiased
estimators. We consider here only unbiased estima-
tors. The variance of any unbiased estimator of one
component of @, say ¢;, is bounded below as

var(¢;) > J5'(2) )

where J(@) is the Fisher Information matrix of the
parameter @ [2, 3]. Let p(y; @) be the probability
density function for the observed noisy data y. The
Fisher information matrix is then given by

J(@)=E [% In p(y; 2)] [% In p(y; Q)]T (3)

where E denotes expected value. Under the zero
mean white gaussian noise assumption (3) reduces
[4] to

1 dzT (@)
3) = —-GTG; T 2= =/
7(@) = 676; 67 = @
The matrix G is called a sensitivity matrix. Assume
that the parameter @ is partitioned into two sets so
that & = [QT,QZ]T By partitioning the matrix G of
(4) as .

. 0z(®)
G=[G1Gy}; Gi= ;
9¢,

we can show that the inverse of the Fisher Informa-
tion matrix of (3) is given by [4]

0z(®)
B, (5)

G2=

[GT P&, Gi]™* *
* [GF P&, Ga]™!
(6)

7@ =at|
where
Pg, =1-Gi(GiG:)'G

Is a projection matrix projecting onto the space or-
thogonal to the space spanned by the matrix Gj, or
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< G; >. The identity matrix is given by I. Ap-
plication of (6) to specific information processing
systems leads to estimates of the theoretical perfor-
mance limit for specific systems, while also deter-
mining necessary the conditions for such systems.

3. SINGLE-IMAGE, SINGLE-LENS,
PASSIVE RANGE ESTIMATION
SYSTEMS

Incoherent Single-image, single-lens, passive range
estimation systems code the object range informa-
tion into unambiguous spatial information at the

image. Such systems should be insensitive to the .

" characteristics of the particular object. The noise-
less sampled image model of this system is

z=h(Y)*u=F()u )

where the system point spread function (PSF) or
impulse response is given by h(y). This PSF is
characterized by the misfocus or normalized range
parameter . The symbol * denotes convolution.
The matrix F(3) is a convolution matrix contain-
ing k() as elements. The unknown object is given
by u.

The unknown parameters of the noiseless sam-
pled data are the normalized range 1 and the object
u. The system, described by (%) and F(¥), is as-
sumed to be known. The unknown parameters can
be grouped as

&=[¢1, 851", b1=9, $,=u
With this partitioning of the parameters, the sensi-
tivity matrices from (5) are found to be
a
G = %F(d})g’ G2 = F(¥) ®)

From (6) the Cramer-Rao bound on estimating the
normalized range ¢ with unknown u is given by

2

- o
var($) > =
G Piy) G

)
where PF'E(W is a projection matrix projecting onto
the subspace orthogonal to < F(3) >. From (9)
we conclude that for passive range estimation to
be possible PFJ'_(d)) must not be a rank-zero projec-
tion, or equivalently F(%) must not be full rank.
The Cramer-Rao bound of (9) also shows that the
variation of F(¢) with ¢, in the intersection of the
rank-one subspace < u > and the subspace orthog-
onal to < F(3) >, must be large for accurate range
estimation.

Since the matrix F'(¥) can be approximated by
a circulant matrix, the eigenvalues of F(¢) are ap-
proximately the DFT values of k(%) [5]. The de-
nominator of (9) can then be approximated as

. bs) . .
GT Phyy Gr = [ P B, S0 do
| (10)

where
; 1 if|H@®, &%) =0
P(eﬂ):{ 0 otJervEfse ) (11)
and where H(1,e’®) and U(e’®) are the DFTs of
the sampled vectors () and u respectively. No-
tice that H(3,e??) is the optical transfer function
(OTF) of the sampled system with misfocus 1, while
U(e??) is the spatial frequency spectrum of the sam-

pled object.

From (9) and (10), a necessary condition for a
passive range estimation systems is that the OTF
must contain zeros that are a function of misfocus

‘or normalized range 9. It is impossible to build a

general passive range estimation system whose OTF
does not contain zeros as a function of misfocus.
With a priori information of the object spatial
frequency spectrum, from (10) a desired condition
on the system is that the magnitude squared varia-
tion of the OTF should be a matched filter for the
expected object spatial frequency power spectrum.

4. EXTENDED DEPTH OF FIELD
SYSTEMS

In an incoherent extended depth of field system, un-
known objects are estimated without knowledge of
misfocus or object range. The model for the noise-
less sampled image is identical to the model of the
passive ranging system

z=h(y)xu=F(Y)u (12)

The difference between the passive ranging prob-

lem and the extended depth of field problem is thatem———

instead of estimating object range 1 without knowl-
edge of the object u, the unknown object u is esti-
mated without knowledge of the range .

Partition the parameter vector as in the passive
ranging problem. The sensitivity matrices G; and
G; are then the same as in (8). The Cramer-Rao
bound on the estimate of the unknown object u from

(6) is then -

o2

var(l) trace(F ()T Pg, F(¥))
Dist

A

(13)
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where Pc*;L1 is the projection matrix projecting onto
the subspace orthogonal to < G >. The relation-
ship of (13) then implies that the variation of F(¥)
with 1, in the rank-one subspace < u >, should be
zero. Additionally, the eigenvalues of F(¢)T F(¢)
should be large.

The denominator of (13) can be placed in terms
of the OTF and spatial frequency spectrum of u, as
in (10), by

trace(F()T P&, P ~ [ P, 0)Pas
(14)

where

0 otherwise

(15)
From (13) and (14), the necessary condition on a
reliable extended depth of field system is that the
variation of the OTF with misfocus should be zero
over the spatial frequencies where the expected ob-
ject has non-zero power. A desired condition is that
the power of the OTF should be maximized where
its variation with misfocus, or the object spatial
frequency spectrum, is zero. From (15), the per-
formance of this type of system is independent of
the unknown object if the object spatial frequency
spectrum contains no zero values in the passband of
the system.

5. PASSIVE RANGE DETECTION
SYSTEMS

In an incoherent passive range detection system the
sum of images of unknown objects from a number
of known ranges is sampled. This can be modelled
as

z= Zb.(tlu) *u; = Z F(g)y; — (16)

The normalized range values ¥; are assumed known
while the objects at the different ranges, u;, are as-
sumed unknown. For simplicity consider the imag-
ing at two ranges, ¢ = 1,2. The results can be
generalized to any number of ranges.

Partition the parameter vector for the sampled
image as

e=[¢1, 611" ¢, =wm, $,=u (17)

The sensitivity matrices of (5) then become

G1=F(¢1), G2=F(¢2) (18)

The Cramer-Rao bound on the estimation of u,
with unknown u, is then

o2

trace(F(¥1)" Ppy,y F(¥1))
The projection matrix of (19) projects onto the sub-
spaces orthogonal to < F(i3) >. For reliable op-
eration at distinct ranges ¥; and 2, the system
should possess orthogonal subspaces < F (1) > and
< F(13) >. And, the eigenvalues of F(v1)T F(31),
within the subspace < P ,) >» should be maxi-
mized. Parallel statements to those above can be
made for the estimation of object u,.

Again, this bound can be placed in terms of the
OTF and spatial frequency spectrum of the object
as

(19)

var(iy) >

trace(F(¥1)7 Piy,) F(¥1)) =
[P, o (20)

where

oy _ [ 1 if |H(%2,e%)|=0
P(e%) —{ 0 otherwise (21)

From (19) and (20), the necessary condition for pas-
sive range detection systems is that the expected
OTFs, as a function of misfocus, should form an or-
thogonal set. A desired condition is that the total
power of each expected OTF should be maximized
and equalized among all expected OTFs. Notice
that the performance of this type of system is inde-
pendent of the unknown objects.
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